Spaces Whose Pseudocompact Subspaces Are Closed Subsets
نویسندگان
چکیده
Every first countable pseudocompact Tychonoff space X has the property that every pseudocompact subspace of X is a closed subset of X (denoted herein by “FCC”). We study the property FCC and several closely related ones, and focus on the behavior of extension and other spaces which have one or more of these properties. Characterization, embedding and product theorems are obtained, and some examples are given which provide results such as the following. There exists a separable Moore space which has no regular, FCC extension space. There exists a compact Hausdorff Fréchet space which is not FCC. There exists a compact Hausdorff Fréchet space X such that X, but not X2, is FCC.
منابع مشابه
Maximal pseudocompact spaces
Maximal pseudocompact spaces (i.e. pseudocompact spaces possessing no strictly stronger pseudocompact topology) are characterized. It is shown that submaximal pseudocompact spaces whose pseudocompact subspaces are closed need not be maximal pseudocompact. Various techniques for constructing maximal pseudocompact spaces are described. Maximal pseudocompactness is compared to maximal feeble compa...
متن کاملOn pairwise weakly Lindelof bitopological spaces
In the present paper we introduce and study the notion of pairwise weakly Lindelof bitopological spaces and obtain some results. Further, we also study the pairwise weakly Lindelof subspaces and subsets, and investigate some of their properties. It was proved that a pairwise weakly Lindelof property is not a hereditary property.
متن کاملOn the Product of Homogeneous Spaces*
Within the class of Tychonoff spaces, and within the class of topological groups, most of the natural questions concerning ‘productive closure’ of the subclasses of countably compact and pseudocompact spaces are answered by the following three well-known results: (1) [ZFC] There is a countably compact Tychonoff space X such that X XX is not pseudocompact; (2) [ZFC] The product of any set of pse...
متن کاملPseudocompact Group Topologies with No Infinite Compact Subsets
We show that every Abelian group satisfying a mild cardinal inequality admits a pseudocompact group topology from which all countable subgroups inherit the maximal totally bounded topology (we say that such a topology satisfies property ♯). This criterion is used in conjunction with an analysis of the algebraic structure of pseudocompact groups to obtain, under the Generalized Continuum Hypothe...
متن کاملProductive Properties in Topological Groups
According to the celebrated theorem of Comfort and Ross (1966), the product of an arbitrary family of pseudocompact topological groups is pseudocompact. We present an overview of several important generalizations of this result, both of “absolute” and “relative” nature. One of them is the preservation of functional boundedness for subsets of topological groups. Also we consider close notions of...
متن کامل